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21 d sin (ABSTRACT Ak 1 < k < q ,(Z)

In chis paper, an algebraic characterization
is made of the problem of resolving two or more and the -n(n)} are uncorrelated zero mean random
closely spaced (in frequency wave number) plane variables with variance I2 the Ak) are the plane
waves incident on a linear array. This algebraic waves' complex amplitudes, the : ki are phase
characterization in turn suggests a number of angles dependent on the sampling instant, the 'k.-
adaptive procedures for affecting the desired reso- are the plane waves' directions of propagation
lution. One of these procedures is herein empiri- relative to the array, and ' is the common wave-
cally shown to provide significantly better length of the plane waves. We assume that the wk
performance wnen compared to other contemporary are all different. Clearly, an estimate of the
procedures used in array processing such as the spatial frequencies k directly yields an estt-
w iener filter, Pisarenko and fUM algorithms. mate of the directions of propagation -k .
This includes both a better frequency resolving
:apability and a faster convergence rate. The above set of p instantaneous measure-

ments (1) is referred to as a "snapshot". To aid
the estimation of the wk, we utilize a number of

I. INTRODUCTION snapshots taken sequentially in time. The array
data then haz the form

An important array processing problem is that q
of decermining the directions of propagation of n) (n) + 7 eJ 5 i

j
k, 0<n'.o-l

oLane waves incident on a linear array of uniform- v'm 
m ( ) - 3-1.

I7 spaced sensors [17. Concemporary spectral 1 mM
anal'sis '-as been applied to this problem and has
'ed to :he development of a variety of processing where = Is the snapshot index and M is the
necnoos that are able to resolve plane waves with total number of snapshots used. In this model, we
-iearv Identical directions of propagation. These assume that the phase angles km: are uncorrejated
7etaocs include the Wiener Fi'ter method [21. the random variables uniformly distributed on'
'axImum Likelihood method [21, and, very recently. This description holds due to the independence 3f
:he ?isarenko method f3. This paper presents an the sinusoidal sources and from the approximate
irrao irocessing approach 5ased upon an algebraic randomness ,f :ime-sampling far below :he Nvquist
naracterizacion of :he irrav processing problem. rate.
,his aooroach is shown :o encompass the netnods
7entioned above as wel as suggesting alternate It will be convenient to renresent the gven
necaods. data in vector notation. The mch snapshot ', w2il

be represented by the p 1 column ;ectcr

MODEL OF :HE ARRAY DAA v - [y ,0) .' ' ... 7 I '

,a: us consider the model of multiple plane
aves incident on a linear array of p sensors We also define the pure complex sLnuscid :ector as
;nidormni7 spaced d units apart in which the .,"

iensor Measurements are contaminated by idditive 3 - [I e - .
wh.a noise. If there are q plane waves. It

.cws tnat t nv carticular instjnt in time, and the noise a-tor associated .:z :he -" inao-

--a rray ;aca ' ,na , 3 a n - as the form snot -s

.', 'I , - Aae : '~k  a' • •  -i. '.2 - * - A) - "".

'nere : e : ine wa .' so.otcal :recuenclas ire i en With :he above not3-' n, e mav ::noac t.v re-r

i ;nt :he snaosnotS v as cCA 
-

L I



equation , 1< m <H n either of chese cases. it is
q intuitively desirable to select a coefficient
v - -n A _.

1  
<1. (7) vector which is nearly orthogonal to each of the

k= 1 
e  

k - data vectors in some well-defined manner. Once
such a coefficient vector has been obtained, the

The array data y, is random due to its plane wave frequencies are determined by examina-
dependency on the random phase angles i km! and tion of the zeros of the z-transform of this vector.
the contaminative noise 1 (n)}. Assuming that Specifically, zeros that are close to the unit
these random variables are pairvise uncorrelated circle are considered to be Indications of plane
and invariant with respect to the snapshot index m. waves. Clearly, closeness is a matter of 'udge-
it follows that each data vector ym can be inter- ment; it may be conveniently evaluated by search-
preted as being a windowed realization of a wide- ing for nulls in the magnitude of the coefficient
sense stationary random vector process. The mean vector's Fourier transform as given by
value of this process is the =ero vector, while its A(,) = <a, s>
associated p -p covariance matrix is specified by

q To obtain a mathematical measure of closeness
- (8) to orthogonality, it is beneficial to introduce an

p k k =~k orthogonality error vector e(a) whose mth element
is the inner product of a with ym . We define

where j-, is the p p identity matrix and the optimum a to be a vector a' which mini-

?k - Ai: is the power of the kth plant wave. mizes some positive definite functional f of

Since the random ,ector process is wide-sense a(a) . Hence we write

stationary, the covariance matrix R must be posi- e(a) - [e(l) e2) ... e(M)
.ve semi-definite, :oeplitz, and Hermitian. We whore

shall now ;ive an algebraic approach to identifying e(m) <a , (10)
:he plane wave frequencies ; k', based upon the and
structure of :he data y and the associated co- f4e(a)' -min fe(.a). )
variance matrix R aA

where A is some prucently chosen set from which
tIl. ALGE3RAIC PROCESS14C APPROACH the solution vector a' is to be selected.

.he approach to be presented is dependent on The inner product in (10) and the functional
determining a nontrivial p 1L vector a that Is in (11) are general at this point. We ;hall now
irthogonal to the noise-free component of each o f choose in particular the standard vector inner
the data vectors 'his )rthoqonality Is de- product a, ' = a. and thenormalized nean
inea ov the oeneral inner product relationship square error functional f - £( e

can be shown that R

;t e.a) - A

<a, .. 2 • m : H .(9) -

where R is the covar-ance matrix 3). 7he
functional klZ) is to be min.zized according !o

nce :ne -k are jil aifferent and the :kImls ,ne constraint such :hat a' s ique ano iin-
ire rincom in nature. i clttle :hought will con- trivial. Lec us now :onsider :wo )ossible con-
.nc€ eself :hat a must ie rthogonal to each straints.

3iAnusoLa vectors i
k t(ta) Hvverplane Constraint

.eet ector T The first constraint is :at a :ies on a
iyperplane specified bv

,, i . c"

A - a
• ~ ~ _ := e "- ' 

i  
? t is

:hen re4 ' nown :nac "he )rthogonallt 3f whnere h is a nontrivial p 1 vector. The
L * - - , L1-es tnac A(z) must outin :o :li with :his :onstrainc zan c * shown

to 3e
ave :inicte :ero, located fn the nlt .r:.e
it -:e t. zrcs *k 

•  
k - - ivh tnla - L

:Iu,.e :ecu*.reo i us_714, :requenceia :an
)e ;eter-irwa ! exa.milaci.n )r :ne :eros )t inu tne inimum riterton'i ,aL..e 's :'.en

;on ueailstitc ! 2nfl0i. cn, --

:tneri. . v r. :nere s 't oie
~e'.t. ~ ;-.l io st i jert:ent :ect'r

7..e seco3na onstraint Li tntr i -.es



quadratic surface specified by 0
_.M iS aparn (19)isubasd erll

A - a z):a' W a V,1 (16) 1'2
7

where 1 is a positive definite, symmetric ;p I is apparent chat 3M is unbiased, Hermitian,

matrix. -The solution to (11) with this constraint u ngnrlnt=epiz utemrolTcan be shown to be one lag product from each data vector is used in
formulating each eement of i ._ Amore desirable

I x (17) estimate is given by the matrix _N whose elements
;Mi. - min am, 2(j c(-j), I < i. p (Z0)

f and the minimum criterion's value is where M p-n-*

fe(a) (18) c(n) 1 -- 7 y m(2'n) (2) , 0< n< p-1

* where (,'tm .- i) is the mlnimum-eigenvalue and c(n) - c*(-n) , -p+ln<0

eigenvector pair of W It is apparent that is unbiased, Hermitian,
T and Toeplitz. Furthermore, it incorporates p-n

These two general solutions (14)-(18) encom- lag products in formulating the covariance element
pass the three processing methods noted in the
introduction: i) For the choice h - [1 0 ... 0, c(n). Therefore the variance of is lower thani nt od u t~ o : ( ) F r = e c oi c [ I 0 . . 0 ', tha t o f & Th u s , th e es t im a t e Am is su p e r io r
(14) is the Wiener Filter solution [2]. As in t tht nd Tu estimate ro is supeior
linear prediction, this constraint implies that to the standard estimate in .erms of its Toeplitz
the first element of a* is fixed and the other
elements are unconstralned. (ii) For the choice The Toeplitz structure of & has an import-
h - j,, (13) is the Maximum Likelihood solution (2. ant implication when used with :he hypersphere
This constraint implies that A'(z) has unity solution. To appreciate this, consider a general
gain at z - ejw and optimally reduced gain else- Toeplitz Hermitian matrix with a distinct minimum
where. (iW) or 1p , the quadratic surface eigenvalue min . An extension of Makhoul's
is a hypersphere of radilus one, and equation (17) findings [5] shows that the z-transfom ((z) of
is a generalization of the Fisarenko solution [31, the eigenvector x corresponding to kmin has all
.41. There are several differences which distin-
guish this procedure from Pisarenko's. First, no
AR2A model is invoked, as is done by KIaykin [3]. hypersphere solution will exactly indicate the

Second, neither noise power removal nor matrix presence of p-1 plane waves if min is distinct.Thus we have a Pisarenko-like solution and it is
order reduction are required. sthrd, this solution possible to apply a power determination technique.s based upon a minimization strater and so[],6]tseateheq culpanwas
;,ustif'es estimates, generally even non-Toeplicz [4], [61 to separate the q actual plane waves

from the p-q-l sourious indications (assuming
if the covariance macrix R . Zn the special case
)1; Toeitz estimate, a power identification q 

<

:echnique like Pisarenko's can be employed, as will Given an estimate of the covariance matrix,
De shown later. Finally, the general constraint either the hyperplane or hypersphere solutions can
rztr:x ; allows greater flexibility than does be employed. We now give simulation results for
:he ?isarenko methoa. these different solirLons.

Since the Wiener Filter solution has better V. SMLATION RESULTS
resolution than che Maximum Likelihood solution

. de snail nereafter consider only the hyper- To compare the performance of these processing
oilane solution with h [i. 01 and the methods, the data vectors (7) were generated by
*,iauratic solution with W = !p (hypersphere computer simulation. The simulation mode! corres-
soltion), ponded to that chosen by Gabriel [21 in his com-

parative paper. Namely, the case of two sources
7: summarize the development to this point, incident on an array was considered. The parameter

:he aliebralc approach is based on approximating selections were q = 2, p = 8, 71 - 1, A1 = A) =
in orthoqonality condition between a solution 31.62 (30dB SNR) and 3.162 (lOdB SNPM, ii 13;,
!et:or and each of the data vectors. Ths 91 - 22', d - 1/2. and M - 50 (many snapsnots) and
joproach suegests many different processing 10 (few snapshots).
nethuos. depending on the :hoice of an inner pro-
iuct. in error functional, and a minimization The data vectors were analyzed by tour
:>nstraint. methods: the hvperplane solution with estimates

Am and .m , and the hypersphere solution with _m
:7. OVARLUNCE HATRIX STLMATE soc Rw . Both the hvperplane solution witn __

and :he hypersphere solution with showed zcod
!mvoicv ne hvperolane and hversphere resolution but large spurious effects. Results

io c jns ;i'en Obcve, in ascimate if :he Zo- or the other two nethods are shown in Figure i.
".'oane matrix ia required. A standard estimate :n :his Figure. the hyperplane soluticn has been
_J evaluated via its Tourier :ransform and :he hvner-
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sphere solution has been evaluated using the power investigation of the algebraic approach is warrant-
determination technique. Overlayed solutions for ed in order to fully exploit its potential.
ten different realizations of the random data are Vu. .
shown to give a sense of each method's consistency.

The results show that both methods work well [1] D.E.Dudgeon, "Fundamentals of Digital Array ?ro-The esuts sow hat othmethds ork ellcessing," ?roc. IEEE, vol. 65, pp 898-904, 1977.
at the high SNR with many-snapshots. However, the
hyperplane solution with .1 performs very poorly (21 W. Gabriel, "Spectral Analysis and Adaptive
at low SNR with few snapshots, while the hyper- Array Superresolution Techniques', Proc. IEEE,
sphere solution with M continues to give good vol.68, pp 634-666, June 1980.
resolution and good suppression of spurious effects. [3] S. Haykin and J. Reilly, '"ixed Autoregressive
In eneral, the hypersphere solution showed better - Moving Average Modeling of the Response of a
performance than the hyperplane solution over a Linear Array Antenna to Incident Plane Waves",
wide range of conditions. Proc. IEEE, vol.68, pp 622-623, May 1980.

VI. CONCLUSIONS (41 V.F. Pisarenko, "The Retrieval of Harmonics

from a Covariance Function", Geophys. J.R.Astr.

approach based upon approximation of a general

orthogonality condition. This approach encompasses [31 J. Makhoul, "On the Eigenvectors of Symmetric
several contemporary high-resolution analysis Toeplitz Matrices", submitted for publication
methods. One method suggested by the algebraic to IEEE Trans. Acoust., Speech, Signal Pro-
approach has been shown to provide significantly cessing, February 1980.
better performance than other methods [2]. Further [6] S. Haykin, ad., Nonlinear Methods of Spectral

Analysis. Berlin: Springer-Verlag, 1979.
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